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ABSTRACT.': A set of simultaneous ordinary differential 
equations is derived for the peak pressure and time 
factor of Shockwaves. These equations satisfy the 
Rankine-IIugoniot conditions and the partial differential 
equations of fluid dynamics. No particular assumptions 
are made as to the nature of the medium, so the equations 
hold for any gaseous or liquid medium. For application 
to explosion phenomena, expressions for the initial 
conditions are found for the Interface between the explo- 
sion products and the surrounding medium (which In this 
case is the place where the Shockwave Is formed). Rela- 
tionships ere derived for tvo cases: 

(1) that the Shockwave is observed at a fixed point 
(applicable to the measurement of airblast 
waves). 

(2) that the point of reservation moves with the 
medium (applicable to Shockwave measurements 
in water). 

i 
Ü, 3. NAVAL ORDNANCE LABORATORY 

WHITE OAK, MARYLAND 



NAVORD Report 2195 1 September 1951 

This report is part of a comprehensive project dealing 
with the calculation of Shockwave and detonation para- 
meters from the chemical composition of an explosive 
which is being carried out under Task N0L-Re2c-3-i. The 
report is for information only, and the opinions express- 
ed therein are those of the authors. The authors wish 
to acknowledge the assistance of Miss Alys B. Russell 
in preparing this report. 

EDV/ARD L. WOODYARD 
Captain, USN 

PAUL M. FYE 
By direction 

ii 



NAVORD Report 2195 

TABLE OF CONTENTS 

Page 

I INTRODUCTION  1 

II KYDRODYNAMIC RELATIONS  h 

Case I: Fixed Point of Observation... 
The Peak Pressure  8 
The Time Factor  10 

Case II: Moving Point of Observation.. 16 
The Peak Pressure  16 
The Time Factor *  17 

III THE FORMATION OF SHOCKWAVES BY EXPLOSIONS 20 

Initial Conditions for the Steady- 
State Explosion  20 

Case 1  21 
Case II - 2*+ 

TV         PLANE  AND  CYLINDRICAL WAVES  25 

REFERENCES  27 

iii 



NAVORD Report 2195 

A THEORY OF THE PROPAGATION OF SHOCKWAVES 
AND THEIR FORMATION BY EXPLOSIONS 

I INTRODUCTION 

1. It has long been recognized that the disturbances 
emitted from explosions are Shockwaves, I.e., waves 
having an Infinitely steep front. Such shock-fronts are 
fully described by the well known Rankine-Hugoniot 
conditions, whereas for the phenomena behind the front 
the hydrodynamlc equations of an lnvlscid fluid, neglecting 
gravitational effects, are applicable. It is the objective 
of this paper to combine these relations in such a way 
that information on the change of the pressure of the front 
with distance can be obtained. This can be done only if 
the distribution of the pressure behind the front is taken 
into account. In our case, the pressure distribution 
immediately behind the front is sufficiently described by 
two parameters, the time factor OLand the shape factor 
o>/o;2. In this paper two different definitions for the 
time factor are used, namely: 

(a) «---Lf-IA-)^ 
and 

1 y J>    \dt dr J     e. 

+> and its derivatives refer to the pressure immediately 
behind the shock-front; £ is the time, f  the radial distance, 
-^ the velocity, <tB a reference length (In the study of 
explosion phenomena,  the radius of the unexploded charge) 
and c-. . a reference velocity (for instance, the sound 
velocity of the undisturbed medium).    These two reference 
magnitudes are introduced in order to obtain the time 
factor as.a dlmensionless magnitude.    The time factors 
c( and c(^u) are related to the Initial decay of the pressure- 
time curve which,  in the case of c( 
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Initial inclination< 
behind front 

j$p... if point of 
ot   observation 

is fixed 

-<&+u£> 
if point of 
observation 
moves with 
the medium 

Sketch of a 
Figure 1 
pressure-time diagram. 

is obtained by observing the pressure from a fixed point, 
but in the case of o(^u^, from a point moving with the 
medium. These two cases have analogies in the experimental 
measurement of Shockwaves due to explosions. In air blast 
measurements, the pressure recording gauges are usually 
so rigidly fixed that they cannot move significantly under 
the action of the impinging blast wave. Here d applies. 
For the measurement of underwater Shockwaves, the gauges 
are usually not very rigidly mounted. Considering the 
high pressures of the Shockwave and the relatively small 
particle displacements in water, the case c('u) seems to be 
more appropriate for underwater explosions. However, it 
should be noted that only small differences are to be 
expected from these two treatments in the range ^f practical 
Shockwave measurements. 

2. The analysis presented in. this paper yields two simul- 
taneous ordinary differential equations for the peak pressure 
and the time factor as functions of distance. In the 
equations for the latter magnitude the  shape factor appears 
as 

or 

These magnitudes are related to the second derivative of 
the pressure with respect to time immediately behind the 
front. Again, the first of these refers to a fixed point 
of observation, the second, to a point moving with the 
medium. 
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3. To Integrate the differential equations, the shape 
factor raust be known as a function of distance. This 
magnitude depends only on the shape of the wave; no 
information about the pressure or the time scale is 
necessary for its evaluation. For instance, if the 
pressure-time curve (observed from either of the points 
of reference discussed above) is an exponential curve, 
the shape factor has the value one; if it is a straight 
line the shape factor is zero. Shockwaves from explosive 
sources have the important property that their shape 
factors are constant within an appreciable range of dis- 
tance. This holds true particularly for the initial portion 
of an underwater Shockwave which, at all distances experi- 
mentally investigated, is an exponential curve to a surpris- 
ing degree of accuracy. 

This fact has first been used by Kirkwood and Bethe [a]* 
in the calculation of Shockwave phenomena. Following their 
usage, we call this procedure tue "peak approximation". 
In our analysis - which is rigorous up to this point - this 
amounts to an a priori assignment of a value to the shape 
factor. 

V. No assumption of a particular shape of the wave is 
incorporated in the equations derived here. This, together 
with the rigorous character of these equations, makes it 
possible to study the validity of the peak approximation 
and to show how sensitive the solutions are to the assumed 
shape of the wave. 

5. In order to obtain numerical solutions of the differ- 
ential equations, the initial conditions must be known. 
In the calculation of Shockwaves from explosions these 
conditions are provided by studying the phenomena at the 
interface between the reaction products and the surrounding 
medium, i.e., by studying the formation of the Shockwave. 
It has often been pointed out that a high-amplitude pressure 
pulse must, during propagation, change its shape in such a 
way that a shock-front is finally built up. This phenomenon 
seldom occurs with Shockwaves due to explosions. The 
rapidity with which the pressure is built up by an explosion 
causes the pressure wave to have a steep front from the very 
beginning. It is a shock-front which emerges from the 
surface of explosion products into the surrounding medium 

* All such letters refer to the list of references at 
the end of this report. 
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a very short time after the detonation of the charge. 
Therefore, this front can provide the initial conditions 
for the differential equations for the Shockwave peak 
pressure and for the time factor. 

6. Several similar approaches to the problem of shock- 
waves due to explosions have been made previously, notably 
by Kirkwood and co-workers. The Kirkwood-Bethe theory [a] - 
though very successful in its application to underwater 
explosions - is based on a propagation theory which is not 
a rigorous solution of the hydrodynamic equations. The 
Kirkwood Brinkley theory [b ] which is applicable to any 
fluid is a rigorous approach based on energy considerations 
and a hybrid form of the Euler and Lagrange equations of 
fluid dynamics. The peak approximation (or "similarity 
restraint" as it is called in that paper) is incorporated 
in the final equations by assuming an exponential wave. 

7. In the present paper, an attempt is made to treat this 
problem in a straightforward manner, starting with the 
Euler equations.  A similar approach has been made previ- 
ously in other papers [c - f] . In these papers equation 
1.6 or similar expressions are derived in various ways, 
but the treatment is not carried much further. 

II HYDRODYNAMIC RELATIONS 

8. The fundamental equations for the fluid motion of an 
inviscld medium, neglecting the Influence of gravity, are 

(O.l) 4*t      +     -U,^r      +  ~" 0 

(02) A + <Uf,       + f«r   + -^  ~ 0 

The subscriptst or r denote the partial derivatives v1th 
respect to these magnitudes. In general, 

Throughout this paper,P denotes the pressure in excess of 
the pressure of the undisturbed medium, jse  . 
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In the above equations «^ Is the particle velocity,/» 
the density and S  the entropy, /" and £  are the space and 
time coordinates respectively. Equation (0.3) states that 
we are considering reversible processes, which is consistent 
with the assumption of an inviscid flula. Equation (0.1) 
to (0.3) are not applicable across discontinuities (shock- I onts), as discussed below. 

9. Equation (0.2) is written for the case of spherical 
symmetry. The case of-cylindrical symmetry Is obtained 
by omitting the factor 2 of the last term of (0.2), the 
plane wave case, by omitting the last term entirely. 

10. Since 

the density can be eliminated in (0.2).  Introducing the 
sound velocity 

*-{min.-& 3 

We obtain from (0.2) and (0.3) 

(p.H) +t   t- »+,.   *■ fi«m   + -^ 0 

11. Introducing the notation 

*     •dt T •^)^ 

(0.1) and (O.h)  can be combined to take the form 

s      ' ft      '        * r 

,    % /   (C-M) {C-M) 2cll 

y>^";can be interpreted as the derivative of -A with 
respect to time along a "(c*>a) - characteristic", i.e., 
along a curve for which in the *-jt  plane 

dt 



NAVÜRD Report 2195 

(t) In general, ft     denotes the derivative along a g-charac- 
teristic for which 

a fully isentropi« flow is considered (S* -  0, ^V = 0, 
therefore also<yt^

u^= 0). we may introduce the Riemann 
12.  If 
therei vx c <x^.^u u^ -   • -  v/ ,  *»«» 
function which is defined by 

(—)    -   - 

(0.5) and  (0.6) can then be transformed into 

(o.7) (<r^t^   - *f- 
(or) (<r-~)l 

which is the well-known Riemann formulation of high-amplitude 
waves. These equations are not always applicable in the 
cases considered here. 

13. For the shock-front, these equations are supplemented 
by the Rankine-Hugoniot conditions. These are three 
equations which permit^,/», <>  and the propagation velocity 
of the front.u , to be expressed in terms of ^> , as soon 
as the equation of state of the medium considered is known. 
Here,^ denotes the amplitude of the shock-front. There 
are tables available which give these relations for air, 
sea water and fresh water [g - k]. For our purpose we 
can consider that^, e , c and U are known functions of 
at the shock-front. 

Since we are interested in the change of the Shockwave 
peak-pressure (i.e., the front pressure; with distance, 
we use the notation 

<*•* -. fv> 
<L£ 
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That is, we arbitrarily define the derivative along the 
u - characteristic (which is equivalent to the shock- 
front) as the total derivative. 

iK,  The concept of the characteristic giircs us a geo- 
metrical approach to our problem. Consider the Character- 
istic triangle" below. 

A t 

Figure 2 
Characteristic Triangle. 

The lines in this figure are drawn in a-t-r plane in such 
a way that 

along 
dbt 

AB dr C + U. 

AE dr 
1 

M,- C 

AF ~d~7 
1 

My 

FB 
dt 
df 

1 

Ü 

We then call 

AB 
AE 
AF 
FIEB 

the " 
the " 
the " 
the " 

C-+U' - characteristic" 
t-u, - characteristic" 

u.   - characteristic" 
U    - characteristic" 
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These lines are not straight lines, since, e.g., 1/U at 
E differs generally from the 1/u at B. This character- 
istic triangle is based on the fact that c-»-a> u which 
holds generally and accounts for shock phenomena. 

15. In Figure 2, the line FIEB represents the shock-front. 
The regime below this line is that of the undisturbed 
medium into which the shock propagates; the regime above 
represents the Shockwave, where there are high pressures 
and a particle velocity towards the front. 

16. Considering the equations above, we find that (0.5) 
holds along the line between A and B and (0.6), between 
A and E. Furthermore, along FIEB the Ranklne-Hugoniot 
conditions hold and along FA equation (0.3) holds. Thus, 
at A we have the same entropy as at F, whereas at B, in 
general, the entropy is different. This is because shock- 
fronts, which involve irreversible processes, cause an 
entropy increment which depends on the amplitude of the 
front. 

17. As far as the thermodynamic state is concerned, we 
note that along FA the common adiabatic (i.e., the isentropic) 
holds, whereas along FB the Hugoniot adiabatic applies. 
Since both of these thermodynamic relationships are known, 
we can express the thermodynamic state along FA as well as 
along FB in terms of the pressure along these lines, if 
the state at F is known. The same holds for the particle 
velocity >* along FB, but not along FA. 

Case I Fixed Point of Observation 

18. The Peak Pressure. Using the characteristic triangle, 
we will now derive the differential equation for the shock- 
wave peak pressure as a function of distance. In Case I, 
we consider the point of observation as fixed. 

On integrating (0.5) and (0.6) along AB and AE respec- 
tively, we have 

8 
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where the double subscript denotes the average obtained 
In the integration. 

In this paper, we will be primarily concerned with 
first or second order expressions. Hence, these averages 
need to be correct only to the first order. For instance, 

i//>c       then becomes: 
i 

A 

With this approximation, (1.1) and (1.2) can be combined 
to give 

(U) 
^)/l^^^[(7)/(7)J(Vtf) 

19. If we expand (1.3) by means of a Taylor's series, 
terms of order zero, one, two, and higher appear. Consid- 
ering only first order terms, equation (1.3/ becomes 

2 46 1    dp 

(n) r tu- (*•-**) -jr *(*•-*>)- JZ^^B-^ 

dp    dt   l B      *■> f    \   s        V     h" V *   l 1 

All magnitudes without subscript refer to the point I, 
i.e., to /" and & . For the various differences in^ , 
we obtain the following first order relations: 

Ar 

*i   " IT 
Ar 

\-\    " 

t   - t      - 
*       1 

*!-*« 

n r 

**-*. 

c «• a - U 

Uff- u) 
2e    A r 

fc*u.-lj)     flr 

(c *■ u.)(t+U-ix) 

where 
Ar 
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Substituting these expressions in (l.*0 and dividing by 
4 r , we obtain on collecting terms: 

(,S)   J^[C^(^)^-^U Eik-^51, iS^Vu) -_0 ft        u 

Using the notation 

and 

(1.5) becomes 

/    a. 
«' " X * *• 

— = X 

(/0 ^ * -^ ♦ & or - o 

where P„ and f?a are functions of the pressure sf> alone: 

When a double subscript appears in functions such as these, 
the first subscript refers to the case being discussed 
(I or II) and the second subscript to the number of the 
function. Thus ?,t is the second P-function of Case I. 

20. The differential equation just formed has been derived 
by other methods (see paragraph 7). For instance, equations 
(0.1) and (0.2) have been combined to give (1.6) directly, 
[d, el . 

21. The Time Factor. In order to obtain a diffaiential 
equation Involving dq/**  , we have to consider the second 
order terms in the expansion of (1.3). Rather than follow- 
ing the same lines as in the foregoing paragraphs, we will 
obtain the desired equation by an analytic method in which 
the computations are shorter. The two procedures are 
analogous, however. 

10 



NAVORD Report 2195 

Differentiating   (0.2)  and   (OA)  partially with respect 
to -£ , we have 

(2 /)     «4<tuulK+   u« «v + -j +t„ '   y /><+,.-- ° 

(2.2) +„ + <* ^„ + »<   K 4 ft} <v + »» (f"'l -"irb^l 

+ <?/>c 
r 

Differentiating   (1.6) along U yields 

2 ^    dp.,       _   <rför 

In addition, 

A 
d*.* 

<U     d/> 

dLp <&' ^  Votf 

—  i r • —X 
dp    <^% 

so that we obtain 

-—- + A& 
du.     dÜ 

[_df       dp 
u ■/AH 

VJ 

^[(^Hf^Cf f *u ^ «^7 

U?ft   d*   d(K 
oe    dfi   dr 

Moreover, 

(2.5) A    (*L)  = u  + uuiK+ -f /u«J 

Introducing o( as well as (1.6) into (OA), we obtain 

U + Q,m  ör. 

11 
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where q,/ol  and Q/ot  are functions of -A- alone. Many such 
functions will appear. They are listed for ready reference 
at the end of this section. As above, each function is 
identified by a double subscript: the first number, 1, 
refers to Case I, and the other two give the sequence 
number of the function. 

22. By differentiation, 

(u^ ---£, (UQ,., +UC, ±%r) 

a: 
uf>, U(? /ot 

Combining this equation with (2A) and (2.5)» we obiain an 
expression for M.^ as follows: 

at- a„ a 
flSl d,(X 

"**. 

Substituting for-«t«. in (2.1). we may eliminate *.tr  between 
this equation and (2.2) to obtain a single equation in which 
-At and -t>tl, appear. We eliminate /t^ by using the follow- 
ing relation: 

so that we obtain the equation 

M 
+X «*♦ % - f A *r + (U -*) S   K     + (U-*)    (/> A   UK 

, 2u.(U-u) /   ,\     2/t* (U-UL) 
-»--—-— (/ftA + ^—7 % 

u1- (U-») 
u '« 

fr. + a(u-.)i -^ 
<£r 

12 
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23. Solving for^,^ , * , c, and - , we obtain the 
following results:  * ~*r      * rt 

ut    - 

u, * 
Siu.     +    Vor* 

a       =   _  -£ä.    _   ÜjU. # 

Further, we define 
/        /a. 

Substituting in (2.6) yields the following equation: 

(Z.7) 

or 

da + _^£_ + 
a." 

+ 0/»<y Ai_^ 

jfe* + V*1^*. |$   = 0 

Again, the functions denoted by P depend on the Shockwave 
peak pressure only. 

2*+. The fund ions denoted above by P and Q  terms are 
explicitly: 

T/Oi 

UUP„   „. c.^(q-u) 

/" / 

- P, 

13 

<**> 
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Q„* -   [J 
»    AL b^^y^fi^fy 

uv^«n,-*jf 

Q    .   ov  A  *!• + uf« (J± M + <,**)«. UP ^fit££. 

«---*--^*»-> 

_ .&_ _ _££*. _ J5ij*!.   _   i»«.«(u-iO 
/*      /,u       /' /c'U 

Q I« 
uUPtt 

U-u. 

<*/»    ~      *«,    U/>/s    +    "   U-^   L^f'S «f _ 

W"' U-u. 

IV 
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*. -/"'**• * $"~«- - 7««- - (u"u) *«-' 
U-u. 

(u-u) <?„. - (u-u) [<u (-** -O - ft <?,.,_ 

- (**), (<?,„ V  «^ " * W -u) Q.f flj*) ''(<?- fc.+ fc.0.) 

4 

/ 

-f^-)^,. 9..-(~)^.«^ + c'4 u. (U-u-) 

Ä.   * 4£ gl  [.Mu-rf] 

% 
=   4a- 

& 4>» 

15 
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Case II Moving Point of Observation 

25. The Peak Pressure. In Case II, It is assumed that the 
oint of observation moves with the particles of the fluid, 
he approach to a differential equation for the Shockwave 
peak pressure is much the same as the one given in para- 
graph 19 for equation (1.6). The characteristic triangle, 
Figure 2, takes a slightly different form, as the line AF 
must now be considered instead of the line AI. The initial 
steps are the same, so that we arrive at equation (1.3) 
again. Introducing 

instead of ^>t, we obtain on expanding (1.3) 

(*/) /' r /><■ 

+. *±**-u -1) + h±rt -1) - ^(t - tt) = 0 
where 

*.-v  = 
*A-  *r 

-^^-   /t - t,) 

te    ** (uu-u)(t+u-i») (K-%) 

Making these substitutions in (3.1)  and dividing through 
by t   -t„   we obtain 

(32) 

A*. 
/>cl (U-u) A 

W c'-(u-«;2 

16 



NAVÜRD Report 2195 

For consistency of notation, let 

so that  (3.2) becomes 

(13) -&- +  -^    +    P«  of* = 0 

where 

P       - _?>>u.e? (u-u)2 

*t 

26. The Time Factor. The procedure of obtaining a differ- 
ential equation for the time factor parallels that for 
Case I. 

Here we define qf[tt) by 

The differential equation has the form 

where the P 's can be expressed in terms of the functions 
and $6  in an analogous way to Case I: 

Yts   - —- fS - —— 

17 
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-r*/ A      y,o» f   0 (U-u/ J-u.        P,x 

Pit   - /o*   <?<„    + ~Qui 

!' U   ^  P*   ll U-u.       .   fti p,< V«£f o£/»/ P,/ <#_ 

c'c.U    .    /ft,-ft 
U-u. ■fc. , 

- (^ ftu ^ ft- v) - fnr) <'(<?... *-+ 9-««) -2 vGN«« 

"Ml      o   &-.A«.   pL S*^L[P fc^W ATI fJTTj     Mu if " Wj *   U-. L1^ P. /   " PJ 

+   u- Li. wT v  vv     ' *   ?* <*+    «^ rf*- 

+ t^^U    _Pz/_ ^c-'u 

l^-«-       k L' 

2 ><Je*U 

18 
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Q», ?*u 

ft-- *$- 

<?,„   - '*•! 
, ry ä.pt.\ ? du,      „ /a*, «tu    «t'^-V 

+   UQu,   + UPtl 

+ UP„ 

»_     <**■  «i'aj 
im v 'n UP, 

<**>    4> 
+   UP' 

2 f du    d.U d,     Ur 

d+      jp d+ 
+ U--H   *OP„ dp 

/ 
1- UR 

ctg?») 

21 

<ftot 
A^hi. f hl 

u rtoe 

's      <*£_ 

_  uUfef/^N _ &\ ?tt-% (dl n 
Qm    ~ ?  > M«£ LZ-*     W>A «& I 

19 
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III THE FORMATION OF SHOCKWAVES BY EXPLOSIONS 

27. The initial conditions for the differential equations 
derived above can be obtained for the case of explosion 
phenomena by considering, the motion of the Interface be- 
tween the gaseous reaction products and the surrounding 
medium. The conditions of continuity In pressure and 
^article velocity yield all the necessary equations for 
the Initial pressure. The use of the characteristic 
triangle is particularly convenient for determining the 
initial time factor. 

Initial Conditions for the Steady State Explosion 

28. Let us consider the idealized steady state explosion.* 
It is assumed that the explosive is converted to gaseous 
reaction products in such a way that at the very first 
moment the pressure is constant throughout the space 
previously occupied by the explosive, and all particles 
are at rest. For the very beginning of the expansion of 
the reaction products at the boundary we have the conditions 

&') u. * « a, 4? -~ +, 

The asterisk refers to the reaction products of the 
explosive, the symbols without asterisk, to the surrounding 
medium. Equation (5.1) represents the condition of con- 
tinuity of pressure and velocity at the interface. Equation 
(5.2) determines the velocity resulting from the expansion 
of the initially motionless reaction products. Since these 
(at least in the moments we are considering here) undergo 
only expansions, which are necessarily isentropic - the 
Riemann function is used: 

<r   - 

71 

4L 

ft 

*lt would be more realistic to assume that the charge Is 
initiated at the center and that a spherical detonation 
wave spreads through the charge causing the explosion of 
the particles in concentric shells, one after another. 
This case can be treated approximately. It will be pre- 
sented in a later publication. 

20 
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Equations(5.1) and (5.2), together with the equations of 
state and the Rankine-Hugoniot equations determine the 
pressure £,  and the velocity .«,  „ The procedure is well 
known and will not be repeated here: see for instance [1]. 
This yields the initial conditions for the differential 
equations, giving the pressure versus distance, (1.6) or (2.3) 

29. Case I. We will now derive an expression for the 
initial time factor. 

o  Figure 3 
Characteristic Triangles at the Interface between 
Reaction Products and Medium for the Steady 

State Explosion 

In Figure 3» the line OelK represents the interface be- 
tween the reaction products (left hand side) and the 
surrounding medium (right hand side). The regime below 
feO is that of the unreacted explosive. Between aef we 
have the reaction products at steady state conditions. 
The expansion takes place in the regime above Klea. The 
line 1EB represents the front of the shock which spreads 
into the surrounding medium. At el the pressure of the 
reaction products drops instantaneously from fa to ^ . 

30. To summarize, we have 

(S3) 

(Si) 

<n » o «:-o *■:-<> 

*   * 
■m.«- °i. 
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Following the same lines as above, we obtain 

(*■■*>       ik(*-*.)-(•> -.)- -(vlA-i) 

With (5.1*) and -^* = ><*^, we find by adding the 
quantities in (5.5) 

* *\       /^ * *. 

Considering the first order terms only, we obtain 

All magnitudes without subscripts refer to the thermo- 
dynamic state at the point 1. 

30. The differences in t can be expressed as follows: 

*«• «« 
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so that (5-6) becomes 

(S?) djL _\ A + if* 
C. + U - u. I    dt 

:(J±±\ 
It + U-u-/ 

•f" 
t 

><> 
2 2U<t*2*£) 

- O 

■fit   can be eliminated by means of 

A: 
<#   U-u 

u.  +   P+ 

Further substitution fovc/^b/^ and ^b±   yields 

M   -fcir*A 
/ / 

r 

a. 

U 
J-U.A   ^.t, 

_ y>4 

a, 

/V 

U   /oW 
a[ + -w—ri +■ - 

t      fit,/        c+U-u* I   <ty> 

r 
*  * / o    *        » L  t / 2 ct ♦ u. 

■) 

- 0 

where <f,    refers to the initial state of the surrounding 
medium at rc = a„    . Solving (5.8) for qff   , we obtain 

(jr.?) 

where 

<*. = «,, 

/ 

<5„ 

6,. 

U 

■Ü- OU-U- 

G.I " 

^fto(Ü-uu) + *UPlt 

2uuc(U-q)   _ ^       cUft 

t+U-u*     />c 

Jce* + u." +• t* 

K»> 

(-- - -) 

Q" '    t+U-u. \<^ "/J V/t. (ü-u) +uUPlt } 
G-functions without an asterisk refer to the surrounding 
medium and depend only on the pressure^, . GJ2 refers to 
the reaction products of the explosion. 
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31. It is of Interest to note that If we had set up 
equations  (5.5) using the characteristic KB instead of 
KE, the result would have been the same. 

32. Case II.    Retaining  J>(t
u)    in (5.7), we obtain 

+ 2«*Y u-» ^ 

Solving for <^w , yields 

.CO 

where 

7^7 

"kC 
2u,t/U-«*) 
t + U-u. 

UPu (^    "^Äe^U-J 

G„ - 

-- <T-$täfä 
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IV    PLANE AND CYLINDRICAL WAVES 

33« It is of interest to know how the functions of the 
foregoing sections would look in the case of plane waves 
or for cylindrical waves.    Once the spherical case has 
been worked out.  it requires only very simple transfor- 
mations to obtain the equations for the two cases mention- 
ed above.    All of the calculations start with equations 
(0.5) and  (0.6).    In the plane wave case, the term   2atV^ 
is zero; as a result no y,,   term will appear.    For the 
cylindrical wave, the divergence term is -cu^, . 

Cylindrical wave» 

(Ha) 

(2.3a.) 

(3.7a) 

(¥./a) 

(S.?a) 

(4.3a.) 

Plane wave: 

«Lv, Zf a.. 

?,* a 
i«> 

d*. 2r a.. 

r« a     p„al 

a1 

<u 

<*> 
&,, 

M' 2 

6 + a * -IT 
H       It    / s. ^ 

-fix. y?   u/* - 

—si   zu.       «v—i 

(uj) 

(ZU) 

(37+) 

(*'4) 

jk + f>ea-o 
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It Is interesting to note that the functions P,.. and vk 
are the same for the spherical, cylindrical and plane 
wave. Hence, If they are computed for a particular medium 
they may be applied to any one of those types of waves. 

In a plane wave 0(t  , is zero. That means a plane 
steady state explosion produces a step wave, whose pressure 
is constant with distance. This holds only fairly close 
to the charge. Later the rarefaction of the explosion 
products becomes effective. A rarefaction wave follows 
this step wave and finally overtakes the front thus causing 
the pressure to drop. These phenomena are well known 
from the theory of the shock tube. 
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